Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks.

Pratapa A, Balachandran S, Raman K., Bioinformatics 31 (20) :3299–3305 (2015).

Abstract

Motivation: Synthetic lethal sets are sets of reactions/genes where only the simultaneous removal of all reactions/genes in the set abolishes growth of an organism. Previous approaches to identify synthetic lethal genes in genome-scale metabolic networks have built on the framework of flux balance analysis (FBA), extending it either to exhaustively analyze all possible combinations of genes or formulate the problem as a bi-level mixed integer linear programming (MILP) problem. We here propose an algorithm, Fast-SL, which surmounts the computational complexity of previous approaches by iteratively reducing the search space for synthetic lethals, resulting in a substantial reduction in running time, even for higher order synthetic lethals.

Results: We performed synthetic reaction and gene lethality analysis, using Fast-SL, for genome-scale metabolic networks of Escherichia coli, Salmonella enterica Typhimurium and Mycobacterium tuberculosis. Fast-SL also rigorously identifies synthetic lethal gene deletions, uncovering synthetic lethal triplets that were not reported previously. We confirm that the triple lethal gene sets obtained for the three organisms have a precise match with the results obtained through exhaustive enumeration of lethals performed on a computer cluster. We also parallelized our algorithm, enabling the identification of synthetic lethal gene quadruplets for all three organisms in under 6 h. Overall, Fast-SL enables an efficient enumeration of higher order synthetic lethals in metabolic networks, which may help uncover previously unknown genetic interactions and combinatorial drug targets.